International Conference on Industrial Engineering and Systems Management **IESM 2009** May 13-15 MONTRÉAL - CANADA

Design of Optimum Component Test Plans while Considering Expected System Lifetime *

Emre YAMANGİL^a, İ.Kuban ALTINEL^b, Orhan FEYZİOĞLU^a, Süleyman ÖZEKİCİ^c,

^aDepartment of Industrial Engineering, Galatasaray University, Çırağan Caddesi No:36 Ortaköy, 34357, İstanbul, Turkey

^bDepartment of Industrial Engineering, Boğaziçi University, Bebek, 34342, İstanbul, Turkey

^cDepartment of Industrial Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, 34450, İstanbul, Turkey

Abstract

We analyze the component testing problem of devices which consist of series connection of redundant, standby redundant and k-out-of-n subsystems. Although system reliability is a common performance measure, here we extend previous studies by considering expected system lifetime. This case applies when setting mission time for a system is more practical than deciding on system reliability accurately. The problem is formulated as a semi-infinite linear programming problem, and the optimum test times are obtained with a column generation technique incorporating reverse convex programming. The proposed solution technique is also illustrated by numerical examples.

 $Key\ words:$ Component testing, Mean time to failure, Semi-infinite linear programming, Reverse convex programming, Column generation

1 Introduction

Testing the system as a whole might be found economically infeasible or physically impossible in many cases. For example, testing a nuclear device is currently banned by international agreements or testing a space shuttle might be found too risky because of its financial consequences. These are extreme but typical examples where one needs to attain a certain performance level without testing the system. Instead the test is done on various components to meet some desired performance measure for the whole system, while achieving a minimal testing cost. This approach has been known in the literature as the system-based component testing which is first mentioned by Gal [12]. The author proposes to minimize total component testing cost while keeping type I error probability at a desirable level and no component failures during tests as the system acceptance criterion. Mazumdar [14] extends this model by also considering type II error probability and changing the acceptance criterion to sum rule. Furthermore, Mazumdar [15]

 \star Corresponding author O. Feyzioğlu. Tel. +90-212-2274480. Fax +90-212-2595557.

Email addresses: emreyamangil@gmail.com (Emre YAMANGİL), altinel@boun.edu.tr (İ.Kuban ALTINEL), ofeyzioglu@gsu.edu.tr (Orhan FEYZİOĞLU), sozekici@ku.edu.tr (Süleyman ÖZEKİCİ).